skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Strey, Helmut H"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Aging is associated with impaired signaling between brain regions when measured using resting-state functional magnetic resonance imaging (fMRI). This age-related destabilization and desynchronization of brain networks reverses itself when the brain switches from metabolizing glucose to ketones. Here, we probe the mechanistic basis for these effects. First, we confirmed their robustness across measurement modalities using two datasets acquired from resting-state EEG (Lifespan: standard diet, 20–80 years, N = 201; Metabolic: individually weight-dosed and calorically-matched glucose and ketone ester challenge, μage = 26.9 ±11.2 years, N = 36). Then, using a multiscale conductance-based neural mass model, we identified the unique set of mechanistic parameters consistent with our clinical data. Together, our results implicate potassium (K+) gradient dysregulation as a mechanism for age-related neural desynchronization and its reversal with ketosis, the latter finding of which is consistent with direct measurement of ion channels. As such, the approach facilitates the connection between macroscopic brain activity and cellular-level mechanisms. 
    more » « less
  2. Aging is associated with impaired signaling between brain regions when measured using resting-state functional magnetic resonance imaging (fMRI). This age-related destabilization and desynchronization of brain networks reverses itself when the brain switches from metabolizing glucose to ketones. Here, we probe the mechanistic basis for these effects. First, we confirmed their robustness across measurement modalities using two datasets acquired from resting-state EEG (Lifespan: standard diet, 20–80 years, N = 201; Metabolic: individually weightdosed and calorically-matched glucose and ketone ester challenge, µage = 26.9 ± 11.2 years, N = 36). Then, using a multiscale conductance-based neural mass model, we identified the unique set of mechanistic parameters consistent with our clinical data. Together, our results implicate potassium (K+) gradient dysregulation as a mechanism for age-related neural desynchronization and its reversal with ketosis, the latter finding of which is consistent with direct measurement of ion channels. As such, the approach facilitates the connection between macroscopic brain activity and cellular-level mechanisms. 
    more » « less
  3. As a field, control systems engineering has developed quantitative methods to characterize the regulation of systems or processes, whose functioning is ubiquitous within synthetic systems. In this context, a control circuit is objectively “well regulated” when discrepancy between desired and achieved output trajectories is minimized and “robust” to the degree that it can regulate well in response to a wide range of stimuli. Most psychiatric disorders are assumed to reflect dysregulation of brain circuits. Yet, probing circuit regulation requires fundamentally different analytic strategies than the correlations relied upon for analyses of connectivity and their resultant networks. Here, we demonstrate how well-established methods for system identification in control systems engineering may be applied to functional magnetic resonance imaging (fMRI) data to extract generative computational models of human brain circuits. As required for clinical neurodiagnostics, we show these models to be extractable even at the level of the single subject. Control parameters provide two quantitative measures of direct relevance for psychiatric disorders: a circuit’s sensitivity to external perturbation and its dysregulation. 
    more » « less
  4. Substance abuse is a fundamentally dynamic disease, characterized by repeated oscillation between craving, drug self-administration, reward, and satiety. To model nicotine addiction as a control system, a magnetic resonance imaging (MRI)-compatible nicotine delivery system is needed to elicit cyclical cravings. Using a concentric nebulizer, inserted into one nostril, we delivered each dose equivalent to a single cigarette puff by a syringe pump. A control mechanism permits dual modes: one delivers puffs on a fixed interval programmed by researchers; with the other, subjects press a button to self-administer each nicotine dose. We tested the viability of this delivery method for studying the brain’s response to nicotine addiction in three steps. First, we established the pharmacokinetics of nicotine delivery, using a dosing scheme designed to gradually achieve saturation. Second, we lengthened the time between microdoses to elicit craving cycles, using both fixed-interval and subject-driven behavior. Finally, we demonstrate a potential application of our device by showing that a fixed-interval protocol can reliably identify neuromodulatory targets for pharmacotherapy or brain stimulation. Our MRI-compatible nasal delivery method enables the measurement of neural circuit responses to drug doses on a single-subject level, allowing the development of data-driven predictive models to quantify individual dysregulations of the reward control circuit causing addiction. 
    more » « less
  5. Epidemiological studies suggest that insulin resistance accelerates progression of age-based cognitive impairment, which neuroimaging has linked to brain glucose hypometabolism. As cellular inputs, ketones increase Gibbs free energy change for ATP by 27% compared to glucose. Here we test whether dietary changes are capable of modulating sustained functional communication between brain regions (network stability) by changing their predominant dietary fuel from glucose to ketones. We first established network stability as a biomarker for brain aging using two large-scale ( n = 292, ages 20 to 85 y; n = 636, ages 18 to 88 y) 3 T functional MRI (fMRI) datasets. To determine whether diet can influence brain network stability, we additionally scanned 42 adults, age < 50 y, using ultrahigh-field (7 T) ultrafast (802 ms) fMRI optimized for single-participant-level detection sensitivity. One cohort was scanned under standard diet, overnight fasting, and ketogenic diet conditions. To isolate the impact of fuel type, an independent overnight fasted cohort was scanned before and after administration of a calorie-matched glucose and exogenous ketone ester ( d -β-hydroxybutyrate) bolus. Across the life span, brain network destabilization correlated with decreased brain activity and cognitive acuity. Effects emerged at 47 y, with the most rapid degeneration occurring at 60 y. Networks were destabilized by glucose and stabilized by ketones, irrespective of whether ketosis was achieved with a ketogenic diet or exogenous ketone ester. Together, our results suggest that brain network destabilization may reflect early signs of hypometabolism, associated with dementia. Dietary interventions resulting in ketone utilization increase available energy and thus may show potential in protecting the aging brain. 
    more » « less